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Hadamard theory is shown to play an important role in the generation of 
Boolean decision functions, a fundamental tool in the field of artificial neural 
network design. Based on a group-theoretic introduction of a complete set of 
Hadamard vectors, whose matrices are of the order of a power of two, we 
classify subsets according to the degree of their linear dependence. We show in 
the thermodynamic limit that essentially the whole Hadamard space is occupied 
by representatives with defect not exceeding two or three. 

KEY WORDS:  Neural networks; Boolean functions; Hadamard vectors; 
combinatorial design. 

1. I N T R O D U C T I O N  

Hadamard matrices have long been known in the theory of combinatorial 
mathematics as well as in numerous applications in technology. (~) They are 
widely used in design and coding theory, particularly in the context of the 
transmission of huge amounts of data through a noisy medium, where they 
serve as powerful discrete fast-Fourier transforms. (2) One of their most 
prominent applications was realized in 1971, when they served as 
codewords for the Mars Mariner 69 telemetry system in order to send 
photographs of Mars back to Earth. (3) Specific applications in weighing 
designs, where the measure of several objects is the sum or a linear 
combination of the individual weights, reveal that mean square weighing 
errors can be substantially reduced. Hadamard transforms have also been 
of considerable importance in problems of visual pattern recognition as 
well as for the construction of suitable error masks in spectroscopy. (41 
Furthermore, there is promising application potential for the analysis of 
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genetic algorithms operating on different coding-function combinations. (5) 
Most recently there has been growing interest in the theory of information 
processing in artificial neural networks, (6.a) where Hadamard vectors play 
a fundamental role in generating Boolean functions. In problems of infor- 
mation storage their powerful internal symmetries can be exploited in order 
to arrive at optimal network structures. (9) 

2. A GENERAL M O D E L  OF DISCRETE A U T O M A T A  

We consider an arbitrary system of N interconnected automata only 
capable of taking the value + 1 or - 1, respectively. We assume that each 
unit can be influenced by a subset of K other units of the network. The 
dynamical rule governing the deterministic time evolution of the system, 
that is, whether unit i will be on or off at the next time step, is 

ai(t + 1)= f~(ajl(;)(t ), o-j-~(0(t),..., ajK(o(t)), i= 1,..., N (2.1) 

Thus, the state of unit i depends only on the value of its input variables 
ajl(o(t), aj2(i)(t) ..... ajK(o(t ) at the previous time step. To be general, the func- 
tion f,  is represented by one of the 2 2~ possible Boolean rules specified by 
a 2K-element truth table, a 2K-digit binary number, or the corresponding 
decimal number between 0 and 2 2K- 1. 

Biologically motivated models may define the transition functions 
by a set of thresholds and synaptic weights describing the strength of 
excitatory and inhibitory so-called higher-order interactions such that the 
dynamical rule (2.1) takes the special algebraic form 

sgn [c~ + ~ cijl aj,(t) + ~ c~i~aj,(t ) aj~(t) (7i( t + 1) 
1_ J l  J l  < J 2  

+ ... + ~ c~,...jKaj~(t).., aj~(t)] (2.2) 
J l  < " "  < J K  J 

The bracket term in (2.2), described by a polynomial of degree K in the K 
input variables, can be interpreted as the internal stimulus felt by unit i. 
The zeroth-order interaction described by the quantity ci represents a 
threshold, while the tensor element c~...j,, usually not symmetric with 
respect to interchange of the subscripts, defines the weight of an sth-order 
interaction between model unit i and the s-subset Jl,...,Js- Restricted to low 
connectivity (K~< 3), Kauffman (1~ applied the model with multicell inter- 
actions and randomly chosen Boolean functions f,. to model the complex 
genetic regulatory system that guides cell differentiation in embryonic 
development. Completely or partially interconnected models restricted to 
two-cell interactions are often used to mimic storage and retrieval 
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dynamics of associative memories. One objective of this study is to show 
that Hadamard theory provides the decisive link between the logic 
formulation, Eq.(2.1), and the algebraic formulation, Eq.(2.2). We 
also remark that quite general models in the spirit of both formulations 
have been elegantly studied within group-theoretic considerations by 
Caianiello.(1~) 

3. G R O U P - T H E O R E T I C  I N T R O D U C T I O N  OF H A D A M A R D  
M A T R I C E S  

In order to enumerate all possible input combinations for a binary 
K-input model, let us first define the binary representation of the integers 
0, 1, 2 ..... 2 x -  1: 

K - - 1  

i= ~ e~2 x'-I ' ( i = 0 , 1 , 2 , . . . , 2 x - - 1 )  (3.1) 
l=0 

where the most significant bit is the first one. The coefficients ~l i then define 
the binary matrix 

Ex = (e~) e Jg2<K( {0, 1 }) (3.2) 

which, for example, for K =  3 reads 

'0 

0 

0 

0 
E 3 = 

1 

1 

1 

1 

0 0 ~ 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

(3.3) 

The rows ei of Eq. (3.3) represent a complete enumeration of all possible 2 K 
binary input combinations for a unit and could also be interpreted as all 
possible spin orientations of a K-spin model. The set VK = {t o, El ..... e2~- ~ } 
of all row vectors consists of all 2 K distinct K-tuples over {0, 1 }. Under the 
operation of componentwise addition modulo two, denoted as G (XOR), 
the set Vx obviously forms an elementary Abelian group of order 2 ~, or, 
what amounts to the same thing, a K-dimensional vector space over 
the field 0:2 of two elements. We introduce the "decimal" representative 
dec( iO j)  via 

ei | ej = edec(i| (3.4) 
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The vectors e2, (i = 0, 1,..., K -  1) are the K canonical basis vectors ei. Since 
the matrix E is of maximal rank K, the K column vectors d of EK can serve 
as a basis in order to generate the K-dimensional Hadamard space ~K, a 
subspace of order 2 x within the space of all possible 2 2~ 2K-dimensional 
vectors. The recipe is as follows: each K-dimensional row vector ej e {0, 1 }K 
is assigned a so-called Hadamard vector h ie  {0, 1 }2~ via 

K - - 1  

U = ~ i a ( e j ) - -  ~ e~e' (3.5) 
t=0 

Thus, 05 H defines a fundamental isomorphism between the K-dimensional 
vector space l :f  and the K-dimensional Hadamard space ~ c 1 : 2 K .  
From the algebraic point of view, this isomorphism is the canonical 
representation of the dual space Hom(l:f, Y2) as subset of the space of all 
functions 

[j-g 
Maps(l:f,  1:2)= 1:22 = 1:2K 

In this representation h j is the vector dual to ej. Note that the matrix 
elements e{ of EK also play the role of the coefficients. Since the row vectors 
~2t are the canonical basis vector et (l = 0 ..... K -  1), we find 

h2t=d (l = 0,..., K -  1) (3.6) 

According to Eq. (3.5), the total set of Hadamard vectors is specified by 
all possible linear combinations of the K basis vectors h2t=e l and the 
Hadamard matrix HK, defined by the matrix elements 

K - - 1  

J - (3.7) h i _ E  l l  Gj~i 
l = 0  

represents the Gram matrix specified by the scalar products of all 2 ~ 
possible distinct K-tuples given by the rows of E~. The matrix HK is 
symmetric and for K = 3, e.g., H K takes the form 

0 

0 

0 

0 
H 3 = 

0 

0 

0 

0 

0 0 0 0 0 0 0 

1 0 1 0 1 0 1 

0 1 1 0 0 1 1 

1 1 0 0 1 1 0 

0 0 0 1 1 1 1 

1 0 1 1 0 1 0 

0 1 1 1 1 0 0 

1 1 0 1 0 0 1 

(3.8) 
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which implies that 
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HKHK=2~ (4.4) 

such that HK is a matrix of Hadamard type as commonly defined in the 
literature.(l~) 

An equivalent design for Hadamard matrices of order 2 K with entries 
hj e { - 1, + 1 } or h~ e {0, 1 } is well known from the following recursive 
construction for a maximal set of orthogonal vectors: 

HI Hi ) for 1= 0, 1 ..... K -  1 (4.5) 
Ht+ 1 = Ht - Hi 

with H o =  1. Note, however, that this introduction appears to be less 
accessible to group-theoretic studies. 

5. B O O L E A N  F U N C T I O N S  A N D  H A D A M A R D  SETS 

The capability of implementing arbitrary Boolean functions is of 
fundamental interest for neural network design based on binary decision 
elements. In this context adaptive information processing eventually aims 
at the determination of appropriate Boolean rules which match best a 
context-dependent task. 

Let us now show that the algebraic description of Boolean rules 
according to Eq. (2.2) can be given in terms of Hadamard design in the 
{ 1, - 1, (3} description. 

Given an arbitrary 2K-dimensional vector c e N2x, we consider the 
Hadamard coordinate transformation 

2 K -  1 

Hc= Y~ cjhJ (5.1) 
j = o  

Since each Hadamard vector can be expressed as a Hadamard product of 
the base [see Eq. (4.1)], we have 

2 K -  1 K - - 1  

Hc= ~ cj 1-I (h2') ~j (5.2) 
j = 0  l = 0  

which is nothing else but a polynomial in the basis vectors h2I= e t with 
coefficients cjER. We use the following notation for this polynomial: 
According to Eq. (3.1), the indices 0 <~j~< 2 ' : - 1  are identified with their 
binary representation ej. Moreover, arbitrary 0-1-vectors are represented 
by their support, that is, by the set of indices with entry 1. In this way, a 
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set M ~  {1,..., K} corresponds to the number JM having in its binary 
representation entry 1 exactly at the places given by M, that is, 

M =  { j l <  "-  < j s } c o r r e s p o n d s t o j M = U ~ - l + 2 J 2 - 1 +  "" + 2  j~-I (5.3) 

Using this identification, we write cM instead of cj and so we get the 
polynomial representation 

Hc = pK(h2~ h 2x-1) = pK(e~ e *~ l) (5.4) 

with the polynomial of degree K in K spin variables 0-1 ,-.., 0-K introduced by 
the bracket term of Eq. (2.2): 

PK(0-1 ..... 0 -K)=r  Z CJt0-A + 2 CJlJ2(~Jl0-J2 
Jl J1 < J2 

-}- " '"  -}- ~ Cjl ...jK0-JI ' ' 'O ' jK  ( 5 . 5 )  
j l <  "'" <Js 

For example, for K =  3, Eq. (5.5) reads 

p3(o-1, 0-2, 0"3) : C-{- CIO" 1 qt-C20-201-C120-10-2"~-C363 

-~ {7130"10- 3 "}- C230"2 O" 3 "~ C123 0-10-2 0"3 (5.6) 

Formula (5.4) finally bridges the gap between Hadamard vectors and 
Boolean functions defined in the algebraic notation, Eq. (2.2). Any 
2X-dimensional vector c defines a Boolean function, specified as the 
2K-dimensional output vector f according to 

f : :  sgn(Hc) = sgn(p,v(e~ e K- 1)) (5.7) 

Since H the multiplicative version of the Hadamard matrix) is regular, any 
of the 2 2K possible Boolean functions defined by f has a representation of 
this polynomial form. 

The inverse problem, where an arbitrary Boolean function, specified 
by f is to be described by Eq. (2.2) is readily solved by the matrix equation 

Hc = 2K . D f  (5.8) 

where D is a diagonal matrix with only positive entries and the factor 2 K 
merely serves for normalization. According to Eq. (4.4), we have 

c = H .  D f  (5.9) 

In this way, the problem of generating arbitrary Boolean functions is 
completely linearized and the components of the coefficient vector c are 
linear combinations of Hadamard vectors. 
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We note that the diagonal matrix D can be arbitrarily chosen to suit 
particular needs. If we choose D as the identity matrix, the coordinates of 
c only take the discrete values of the set { - 2  K, --2K+ 2,..., 2K}. A variety 
of other useful problems with application potential arise. One might ask 
how to choose D to generate coefficient vectors c of special type, e.g., with 
a maximum number of zeros, corresponding to a minimal set of Hadamard 
subsets. Since linearly separable Boolean functions can be generated 
exclusively by Hadamard basis  vectors, one could attack various counting 
problems within this special highly restricted and important subset. One 
might generate specific classes of Boolean functions characterized by 
ternary coefficients c , c  1 ..... C12. . .K~{0 , + 1 , - 1 } .  We remark that this 
special class is of enormous interest for economic chip design, since one 
needs only one single bit per synaptic connection. Obviously many of these 
problems are intimately related to the important problem of minimal 
representations for Boolean functions. 

6. L INEAR R E L A T I O N S  W I T H I N  H A D A M A R D  SETS 

Hadamard subsets have been the focus of several recent studies within 
the neural network field. Under the severe restriction to first-order 
networks, Eq. (2.2), Krisement (6) first presented analytical results about the 
quality of storage of Hadamard vectors, so-called Hadamard patterns. At 
a later stage, Folk and Kartashov (7) gave a heuristic study on equivalent 
first-order network models embedding specific Hadamard sets. This work 
was commented upon and supplemented by Brawley and Lisonek, (a) who 
gave a group-theoretic approach to the classification problem without any 
link to neural network design. Furthermore, we want to point out that 
from the information storage point of view it might appear rather awkward 
to restrict oneself to first-order nets in problems when information is highly 
correlated and structured as in the case for Hadamard patterns. In fact, 
first-order networks only capture two-component correlations within a 
pattern set. However, precise first-order studies (7'8) can serve as a useful 
tool in order to shed some light on the poorly understood relationship 
between random and orthogonal pattern sets in the large-N limit. On the 
other hand, second-order networks, capturing three-component correla- 
tions, open the way to integrate the powerful internal symmetries of 
Hadamard patterns into network architectures in order to optimize 
economic network design as well as performance. (9) 

Let us now consider a p-subset of the full Hadamard space, 

H p  = {h  jl, h j2 ..... h jp } ~ H *  = H\{0} (6.1) 
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Although the individual members of lip are pairwise orthogonal with 
respect to {1, - 1 ,  C)}, they are in general not linearly independent within 
the vector space ~K. Thus, all (2; 
subsets Hp = {U 1, hi2,..., Up} can be classified with respect to the degree of 
their linear dependence: We call two sets lip and H~ equivalent if and only 
if they span vector spaces of the same dimension r, 

rank(h jl, hi2,..., h#) = rank(hJl, hJ~,..., hJ~) = r (6.2) 

i.e., Hp and Hp are of the same rank r. Because of the duality [see 
Eq. (3.5)] between h j and ej, Eq. (6.2) is equivalent to 

rank(ejl, ej2 ..... %) = rank(eil, ej~,..., cjl) = r (6.3) 

Thus, the "larger" Hadamard space is no longer relevant. According to the 
equivalence relation (6.2), the space of all subsets lip splits into orbits 
whose length is of considerable interest for various fields in theory and 
neural network applications, i.e., counting of equivalent Hadamard sets (7'8) 
as well as generating and classification of Boolean functions. 

The length of these orbits, specified as OK(p, r), is composed of two 
factors, namely the number of different r-dimensional subspaces within the 
K-dimensional space -gffK, denoted as MK(r), times the number of subsets 
lip of order p generating a fixed subspace of dimension r, denoted as 
N(p, r). While the first number is independent of p, the latter does not 
depend on K, and the length of these classes is given by 

OK(p, r) = X(p, r) MK(r) (6.4) 

Note that by introducing the rank r, we separate the influence of K and p. 
The number of subspaces of dimension r in some K-dimensional space over 
Dz2 is easily counted, (12~ 

r 1 2 K_ 2 i 

Mx(r) = ]-I 2 r -- 2 i (6.5) 
i = 0  

[-In group-theoretic terms this number is the index of the stabilizer group 
of any r-dimensional space V within the full linear group GLK([F2).] 
The total number N(p, r) of a// p-subsets of ~z~\{0} generating the 
r-dimensional vector space ~z~ is given by (13~ 

1 p - - I  

U(p, r) = S(p, r).~..  I-[ ( 2p - 2i) (6.6) 
i = O  
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Here S(p, r) is specified by a q-analogon of the recurrence relation for the 
Stirling numbers of the first kind. (13) 

6.1. Orbi t  Lengths for r = p  

In the case r = p the quantity N(p, p) is the number of unordered 
bases of a p-dimensional vector space, hence given as the number of 
ordered bases #GLp(~Zz)=l-[/P__-0 t ( 2 P - 2  i) divided by p!. [This is in 
accordance with Eq. (6.6), since S(p, p) = 1.] For the orbit of a linearly 
independent p-Hadamard set we therefore find 

p - - 1  

O~:(p, p) = N(p, p). Mx(p)  =~.v l-[ ( 2 ~ -  2i) (6.7) 
i = 0  

Equation (6.7) immediately reveals that for K ~  oo and finite p the ratio 

OK(p,p)/(2; -1 ) ;~; 2K-2i 
= 2K_i  (6.8) 

approaches the value 1 such that this orbit practically occupies the whole 
volume. We will see in the next section that for the more interesting case 
p = K the corresponding limit will emerge in a natural way. 

6.2. Orbi t  Length for Defect  > 0  

In the general case we introduce for convenience the defect d := p -  r. 
According to Eqs. (6.4)-(6.6) the length of the orbit consisting of all 
p-subsets of rank r is given by 

OK(p, p - -d )  S(p, p - -d )  P- '  p -a - ,  2K 2 i 
- p! [1 (2P-2 i )"  [ I  2i (6.9) 

i = O  i = O  pp--d 
In order to study the special case K =  p, we first define the ratio R(p, d) = 
Op(p, p -d ) /Op(p ,  p), which can be written as 

S(p, p - d) dl: I' 1 (6.10) 
R(p, d) - ~7--2)- " 2 p_  2 ~ 

i = 0  

Note that the ratio R(p, d) specifies the fractional space of the volume 
filled by the orbit with defect d compared to the space filled by the orbit 
with defect d = 0. Since for higher values of d the generalized Stirling 
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numbers (~3~ S(p, p -  d) are not given explicitly, we exploit the fact that in 
the large-p limit and d finite they exhibit the asymptotic behavior 

S(p, p - d )  = 2dp-(d2) I-I 1 i=1 ( 2 i - 1 )  (6.11) 

Thus, for p >> d the quantity R(p, d) takes the simple form 

2 a 
R(p, 

d) = I~f= 1 (2 i -  1) 2 
(6.12) 

where R(p, 0)=  1. The rapidly converging series 

d 

R(p,l)= Z R(p,l)+ Z R(p,l) (6.13) 
l = 0  l = 0  l = d + l  

can be easily calculated within arbitrary accuracy, since for the remainder 
D(d) one finds the following inequality serving as a strict upper bound: 

1 
�9 R ( p ,  l )= (6.14) 

l=a+l ,'=a+ 11-Ili=l ( 2 i -  1)2<2 (a+1)2- 1 
D ( a )  = 

Hence we have 
o~ 
L R(p, l) = 3.4627466 (6.15) 

/ = 1  

The individual ratios R(p, d) representing the fractional space of the orbit 
with defect d compared to that with defect 0 take the values 2, 4/9, and 
8/441 for d =  1, 2, and 3, respectively. Since the quantities O(p, p -d )  
satisfy the sum rule 

Y~ O(p, p - a )  = ( 6 . 1 6 )  
d = O  

we find for the corresponding fractional volumes with respect to the total 
volume 

'0.288788 for d =  0 

086636  for 
(6.17) 

t=o 0.994716 for d = 2  

0.999953 for d =  3 

Thus, choosing a random set of p Hadamard patterns, there is--in the 
limit K = p ~ oo--only a 0.0047 % chance that their defect d is greater than 
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three. Accordingly, the study of finer-structured equivalence classes (7'8) that 
are well separated by different defects could be restricted to defects less 
than or equal to three. Note that the fractional volume for the linearly 
independent orbit in Eq. (6.17) (d=  0) can also directly be calculated from 
Eq. (6.8); however, the product series converges rather slowly, in marked 
contrast to Eq. (6.13). 

In studying the finer-structured orbits of p-subsets Hp under the action 
of the full linear group GLK(~2) suggested by Folk and Kartashov, (7) the 
defect d will also play a vital role. (16) We also indicate that, there, too, the 
influence of K and of p may be separated with the help of the rank r. This 
reduces the problem to the study of the r-dimensional general linear group 
GLr(~2), and then by introducing the defect d one further reduces the 
investigation to the d-dimensional linear group GLd(Dz2). 

7. CONCLUSION AND OUTLOOK 

We have demonstrated that Hadamard subsets can serve as natural 
generators for specific designs of arbitrary Boolean functions. Moreover, 
simple counting methods allow the classification of Hadamard subsets 
according to the rank of their generators. Further investigations involving 
the study of finite group representations could shed some new light on 
some old and open problems of information storage based on Boolean 
input-output rules. (15) Moreover, fine-structured classifications according 
to refs. 7 and 8 could give some substantial contributions to the intriguing 
fundamental problem of the economic generation and classification of 
Boolean functions. 
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